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Abstract. The electronic energy loss of a dressed ion penetrating through matter is commonly considered
as being synonymous with the sum of the excitation energies of the target and the projectile in atomic
collisions undergone during the passage. We show that this is not justified in projectile-ionizing collisions
and discuss some consequences.

PACS. 34.50.Bw Energy loss and stopping power – 34.50.Fa Electronic excitation and ionization of atoms
(including beam-foil excitation and ionization) – 34.70.+e Charge transfer – 52.40.Mj Particle beam
interactions in plasmas

1 Introduction

The stopping of swift heavy ions in matter is a com-
plex phenomenon [1] involving several processes that are
nonexistent or unimportant in case of light particles such
as protons and antiprotons, electrons and positrons. In
addition to effects caused by the strong Coulomb inter-
action between a heavy ion and the target electrons and
nuclei, processes affecting the state of the projectile such
as charge exchange and projectile excitation need to be
considered.

Recent progress has been achieved in the atomistics of
target excitation [2,3]. Moreover, a framework for treating
statistical aspects of projectile processes has been estab-
lished some time ago [4] and explored in detail [5,6].

Following up on reference [6] the present note addresses
atomistic aspects of charge exchange and projectile exci-
tation, in particular the energetics of projectile ionization
where we identified an unclear point in the pioneering pa-
per by Kim and Cheng [7] which seems to have propagated
into the literature. Special attention will be paid to the
definition of energy loss and its relation to experimental
situations.

2 Stopping involving excitation only

For reference we consider an individual collision event be-
tween an ion 1 of mass M1 and velocity v1 and a target
atom 2 at rest. Energy conservation yields
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where v′
1 and v′

2 are the velocities of the ion and the target
after the collision and W1 and W2 the respective excitation
energies. The loss of kinetic energy by the projectile is then
given by
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The quantity
Q = W1 + W2 (3)

is conventionally called the inelastic energy loss.

3 Collisions involving charge exchange

3.1 Definition of energy loss

In the presence of charge exchange we need to define what
we mean by energy loss.

If the ion loses an electron during the collision, the
change in its translational (center-of-mass) energy is
given by
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where m is the electron mass. With M1 � m and, for
electronic collisions, v′1 � v1, this reduces to

T ′ � M1
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2
)

+
m

2
v2
1 (5)

apart from terms that are much smaller.
In particle penetration the point of reference is the

velocity of the nucleus [5]. Therefore we define the quantity

T =
M1

2

(
v2
1 − v′1

2
)

(6)

as the energy loss per collision which, in conjunction with
the pertinent cross-section, determines the stopping cross-
section. Thus, for a one-electron-loss event we have

T = T ′ − m

2
v2
1 . (7)

Equation (6) will also be adopted for electron capture.

3.2 Electron loss

For clarity we first consider the case of an ion losing a
single electron in a collision.

Energy conservation reads
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where U1 is the ionization energy of the ejected electron.
The contributions W1 and W2 have been kept, except that
W1 now denotes a possible additional excitation (apart
from ionization) of the projectile.

From equation (6) we then find

T = −m

2
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2
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2
. (9)

With regard to the recoil term M2v
′
2
2
/2 we need to dis-

tinguish between nuclear and electronic collisions. In nu-
clear collisions the momentum transfer is ≤ 2µv1, where
µ = M1M2/(M1+M2) is the reduced mass. For sufficiently
large momentum transfers ∼ 2µv1, only the last term in
equation (9) is significant. Conversely, in electronic colli-
sions the momentum transfer is � 2mv1. This makes that
term negligible.

The present study addresses electronic processes.
Hence we may write

T � U1 +
m

2

(
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1

)
+ W1 + W2, (10)

neglecting terms that are much smaller. According to
equation (7) we have

T ′ � U1 +
m

2
v′e

2 + W1 + W2. (11)

The above estimate may readily be generalized to a multi-
loss event where n1 electrons are lost from the projec-
tile and n2 electrons from the target. In an independent-
particle notation,
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and
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3.3 Electron capture

Next, consider a nonradiative event where the ion captures
a single electron from a target atom. Energy conservation
reads
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where U2 is the binding energy of the captured electron
to the target and U ′

1 its binding energy in the projectile
state into which it has been captured.

Leaving out the recoil term again we obtain the energy
loss

T � m

2
v1

2 + U2 − U ′
1 + W1 + W2 (15)

by means of equation (6).
Equation (15) could be generalized to multi-capture

events if necessary.

3.4 Inelastic energy loss

We have deliberately avoided the term “inelastic energy
loss” Q in the present section because it is somewhat am-
biguous. In elementary physics, inelastic energy loss is the
difference between the translational energy before and af-
ter the collision. This definition reduces equation (8) to
Q = U1 + W1 + W2. Frequently, however, all electronic
energy loss is denoted as inelastic, in which case mv′e

2
/2

would have to be added. With this Q reduces to T ′. Sim-
ilar considerations apply to the case of capture.

3.5 Capture-loss cycle

For a capture-loss cycle, i.e., a one-electron capture fol-
lowed by a one-electron loss or vice versa, one finds the
energy loss

Tcycle = Tloss + Tcapture =
m

2
v′e

2 + (U1 + W1 + W2)loss

+ (U2 − U ′
1 + W1 + W2)capture

(16)
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from equations (10, 15), where the term mv2
1/2 has

dropped out. The same result is obtained if the energy
loss in capture and loss events is defined by the transla-
tional energy T ′ given by equation (5) for electron loss and
its equivalent determined from equation (14) for capture.

3.6 Deposited energy

It is obvious that for composite projectiles a distinction
has to be made between the energy lost by the projec-
tile and that deposited in the target [7,8]. In the present
notation the latter may be written as

D =
m
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2 + W2 +
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2
v′2

2 (17)

for a collision involving single-electron loss. By means of
equation (8) this may be written as

D =
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2
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1 − M1 − m

2
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� T +
m

2
v2
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= T ′ − U1 − W1. (20)

This assumes energy to be deposited at the collision site.
In practical applications it may be necessary to take into
account energy transport away from the collision site by
secondary electrons (mv′e

2
/2), Auger electrons (W2) and

recoil atoms (M2v
′
2
2
/2).

4 Reference frames

4.1 Excitation only

The conventional way of treating projectile excitation in-
vokes symmetrization, i.e., interchanging the roles of tar-
get and projectile. A simple example is equation (2) where,
in the absence of target and projectile ionization, the elec-
tronic energy loss

T = W1 + W2 (21)

is simply composed of the excitation energies W1, W2 of
the projectile and the target.

4.2 Including ionization

Equation (21) has been adopted by Kim and Cheng [7] for
all excitations, including those into the continuum. It is
then tacitly assumed that excitation energies of the pro-
jectile are to be measured in a reference frame in which the
projectile is at rest. This is unproblematic as long as the
excited electron remains bound but becomes questionable
when it is ejected.

Consider first excitation and/or ionization of the target
described by an energy transfer

T2 = W2 +
n2∑

ν=1

(
U2ν +

m

2
v′e2ν

2
)

. (22)

Interchanging the roles of projectile and target implies
a transformation to a reference frame moving with the
projectile. If velocities in that frame are denoted by

u... = v... − v1, (23)

we obtain an energy transfer
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The difference

T − T1 − T2 =
n1∑
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)
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T being given by equation (12), is nonvanishing in gen-
eral. While the last term in the brackets stems from the
difference between T and T ′, the two first terms are of a
kinematic nature and cannot be ignored in general. Elim-
ination of v′

e1ν by means of equation (23) yields

T = T1 + T2 + ∆T (26)

with

∆T = v1 ·
n1∑

ν=1

mu′
e1ν . (27)

This reduces to equation (21) in the case of excitation
without ionization (n1 = 0) or u′

e1ν → 0, as it should.
Now,

∆P e ≡
∑

ν

mu′
e1ν (28)

is the momentum transfer to ejected projectile electrons.
Its component in the direction of v1 tends to be negative.
Hence the expression T1 + T2 tends to overestimate the
energy loss of the projectile.

From momentum conservation and equations (26)
and (27) we find

T = M1v1 · (v1 − v′
1) = v1 · (∆P 2 + ∆P e), (29)

where ∆P 2 is the momentum transferred to the target,
and hence

T1 + T2 = v1 · ∆P 2, (30)
i.e., T1 + T2 determines the change in velocity of the
center-of-mass of the projectile. In case of electron loss,
the center-of-mass of what used to be the projectile does
not coincide with the position of the nucleus. This is ac-
counted for by the term ∆P e.

Thus, the stopping cross-section for events involving
electron loss contains a term

∆S =
∫

∆Tdσ = v1 ·
∫

∆P e dσ (31)

which is typically negative. Explicit evaluation requires a
model for the differential cross-section dσ.
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Fig. 1. T1+∆T versus T1 for binary collisions with an inelastic
energy loss U1. Cf. equation (34).

5 An estimate

The correction ∆T must become most pronounced for
the highest excitations, where u′

e1ν is large in magnitude
and close to antiparallel with v1. Following Bohr [9] one
may treat such events by binary-collision dynamics, but
we need to take into account the ionization energy in the
energy balance.

Denoting the momentum transfer from the target atom
to a single projectile electron by

P = 2mv1| cosϕ|, (32)

where ϕ is the angle between P and v1, energy conserva-
tion leads to

T1 = 2mv2
1 cos2 ϕ =

m

2
u′

e
2 + U1 (33)

and
∆T = mv1u

′
e cosϕ = −

√
T1(T1 − U1). (34)

Figure 1 shows this relation. It is seen that for T1 � U1,
i.e., close collisions of the target nucleus with a projectile
electron, T1 + ∆T approaches the value U1/2 so that T1

and ∆T nearly cancel each other. From this we find a
rough estimate for the contribution from projectile ion-
ization to the stopping cross-section,

Sproj ioniz =
∫

T1>U1

(T1 + ∆T ) dσ(T ) ∼ U1σ1, (35)

where σ1 is the loss cross-section. This is significantly
lower than the value emerging from symmetrization.

6 Discussion

Let us first summarize the problem discussed here in phys-
ical terms. As long as all electrons remain in bound states

we may consider inelastic energy losses as being superim-
posed from changes in the electronic configurations of the
projectile and the target, respectively,

T = T1 + T2. (36)

If at least one electron leaves the projectile, a choice of ref-
erence frame has to be made. In stopping measurements
the relevant reference frame is the laboratory system. In
that reference frame the kinetic energy of an ejected elec-
tron will typically be lower than its translational energy
before the collision, because in a frame of reference mov-
ing along with the projectile, the electron will typically be
ejected in the backward direction. Hence, equation (36)
ceases to be valid and needs to be replaced by (26).

As far as we are aware this feature has been overlooked
in the literature on stopping of partially-stripped ions.

Kim and Cheng [7] performed a pioneering study of the
stopping of partially-stripped ions in the Born approxima-
tion. Their treatment represents an extension of the Bethe
theory [10]. Equation (36) reads Emn = E

(p)
m + E

(t)
n in

their notation, where m and n refer to excited states of
the projectile (p) and target (t), respectively. No distinc-
tion is made between excitations into bound states and
the continuum. As far as we can see the same feature goes
again in references [11–14] and subsequent papers by the
same groups of authors, all of which address the problem
within the Born approximation.

Crawford [8] considered the problem of energy depo-
sition by partially-stripped ions in the stopping medium.
While the definition of the quantity studied – which is
not strictly equivalent with the one defined in our equa-
tion (17) but based on the concept of restricted energy
loss – avoids a moving reference frame, the problem re-
turns in the energy balance in Crawford’s equation (13)
which contains excitation energies �(ωi + ωj) of the pro-
jectile and target, both of which taken in the respective
rest frames. Electrons ejected with low velocities in the
moving frame have high velocities in the laboratory frame
and, therefore, are not included in the restricted-energy-
loss function. Conversely, low electron speeds v′1eν repre-
sent high speeds u′

e1ν which may cause a significant error
when included in the energy balance.

Arnau and Echenique [15] considered the stopping of
partially-stripped ions in an electron gas. Careful atten-
tion was paid to the definition of the energy-loss function1,
but again, target and projectile excitations were treated
within the respective rest frames.

Kabachnik and Chumanova [16] studied the impact-
parameter dependence of electronic energy loss, including
excitation and ionization of the projectile. It is our under-
standing that the energy and momentum balance in the
determination of excitation probabilities has been treated
with an adequate degree of rigor. However, their energy-
loss function, based on the quantity �ωfi = Ei+εi−Ef−εf

where Ei,f and εi,f refer to the target and the ion,

1 Energy loss was defined here as the change in center-of-
mass energy T ′. According to Section 3.5 this does not lead to
ambiguities when only equilibrium stopping is considered.



P. Sigmund and L.G. Glazov: Charge exchange and projectile excitation 215

respectively, does not distinguish between projectile ex-
citation and ionization.

Maynard et al. [17] studied projectile excitation on the
basis of an average-atom model. In their approximation
the velocity of ejected projectile electrons in the moving
system, u′

e1ν , was set equal to zero, based on the argument
that the excitation probability decreases rapidly with in-
creasing excitation energy. While this approximation can
hardly be generally valid, it constitutes an explicit state-
ment that an approximation has been made.

Equation (36) also enters the modified-Bohr stopping
theory developed by one of us [18]. Calculations were re-
ported for neutral projectiles in a fixed charge state. Ac-
cording to the discussion in the previous section, estimated
stopping cross-sections for projectile ionization must be
too high.

A more recent development along that line is the bi-
nary theory which, in its original form, addressed target
excitation only [2]. Projectile processes were taken into ac-
count subsequently [3,19], again in the symmetrized form
equation (36).

For oxygen in aluminium, a system studied in great
detail, projectile excitation/ionization was found to con-
tribute ∼20% of the equilibrium stopping cross-section
at 1 keV/u, ∼10% at 100 keV/u and less than 1% for at
energies exceeding 5 MeV/u. These figures indicate upper
bounds on the error made by ignoring ∆T .

Grande and Schiwietz [20] applied their unitary-con-
volution approximation to the stopping of heavy ions both
under equilibrium and non-equilibrium. Projectile excita-
tion and ionization were allowed for, again in the sym-
metrized form, thus overestimating that contribution.

While inclusion of ∆T is essential in both equilibrium
and nonequilibrium stopping, Section 3.5 implies that cor-
rect placement of the term mv2

1/2 is of concern mainly in
nonequilibrium stopping.

As long as energy loss is defined via T , equation (6),
this term does not contribute to the energy loss in
electron-loss collisions but needs to be included in cap-
ture events. This is in accordance with common practice:
a captured electron needs to be accelerated to the velocity
of the ion [21].

If, alternatively, energy loss is defined over the quan-
tity T ′, equation (5), the contribution to the stopping
cross-section from loss events increases while the one from
capture events decreases correspondingly and, in fact, may
become negative [22]. While this is not in conflict with con-
servation laws, it does not imply that the projectile gets
accelerated.

Comparisons with experimental data on stopping in
charge equilibrium – where the number of captures equals
that of losses in the average – have occasionally [7,14,23]
been performed on the basis of T1 + T2, ignoring not
only ∆T but also the contribution from electron capture

to the total stopping cross-section. This implies that the
term mv2

1/2 neither enters the contribution from loss nor
capture. This may be justified at low velocities if the first
term on the right-hand side in equation (15) is negligi-
bly small. However, this velocity range will typically fall
outside the range of validity of the Born approximation
applied in references [7,14,23].

Apart from the estimate given in Section 5 we have
refrained from making numerical evaluations of necessary
corrections, because those are specific to the calculational
schemes mentioned above. Here we just note that equa-
tion (27) has now been incorporated into the PASS code
implementing the binary theory [3] and will be taken into
account in forthcoming applications.
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